Merge branch 'pretty' of github.com:fnp/wolnelektury into pretty
[wolnelektury.git] / apps / search / views.py
index 00391f1..cf00870 100644 (file)
@@ -15,7 +15,7 @@ from catalogue.views import JSONResponse
 from search import Search, JVM, SearchResult
 from lucene import StringReader
 from suggest.forms import PublishingSuggestForm
 from search import Search, JVM, SearchResult
 from lucene import StringReader
 from suggest.forms import PublishingSuggestForm
-
+import re
 import enchant
 
 dictionary = enchant.Dict('pl_PL')
 import enchant
 
 dictionary = enchant.Dict('pl_PL')
@@ -137,16 +137,43 @@ def main(request):
                 b2.boost *= 1.1
             if bks is []:
                 author_title_rest.append(b)
                 b2.boost *= 1.1
             if bks is []:
                 author_title_rest.append(b)
+
+        # Do a phrase search but a term search as well - this can give us better snippets then search_everywhere,
+        # Because the query is using only one field.
+        text_phrase = SearchResult.aggregate(
+            srch.search_phrase(toks, 'content', fuzzy=fuzzy, tokens_cache=tokens_cache, snippets=True, book=False, slop=4),
+            srch.search_some(toks, ['content'], tokens_cache=tokens_cache, snippets=True, book=False))
+
+        everywhere = srch.search_everywhere(toks, fuzzy=fuzzy, tokens_cache=tokens_cache)
+
+        def already_found(results):
+            def f(e):
+                for r in results:
+                    if e.book_id == r.book_id:
+                        e.boost = 0.9
+                        results.append(e)
+                        return True
+                return False
+            return f
+        f = already_found(author_results + title_results + text_phrase)
+        everywhere = filter(lambda x: not f(x), everywhere)
+
+        author_results = SearchResult.aggregate(author_results)
+        title_results = SearchResult.aggregate(title_results)
         
         
-        text_phrase = SearchResult.aggregate(srch.search_phrase(toks, 'content', fuzzy=fuzzy, tokens_cache=tokens_cache, snippets=True, book=False))
-        
-        everywhere = SearchResult.aggregate(srch.search_everywhere(toks, fuzzy=fuzzy, tokens_cache=tokens_cache), author_title_rest)
+        everywhere = SearchResult.aggregate(everywhere, author_title_rest)
 
         for res in [author_results, title_results, text_phrase, everywhere]:
             res.sort(reverse=True)
 
         for res in [author_results, title_results, text_phrase, everywhere]:
             res.sort(reverse=True)
-
+            for r in res:
+                for h in r.hits:
+                    h['snippets'] = map(lambda s:
+                                        re.subn(r"(^[ \t\n]+|[ \t\n]+$)", u"", 
+                                                re.subn(r"[ \t\n]*\n[ \t\n]*", u"\n", s)[0])[0], h['snippets'])
+                    
         suggestion = did_you_mean(query, srch.get_tokens(toks, field="SIMPLE"))
         suggestion = did_you_mean(query, srch.get_tokens(toks, field="SIMPLE"))
-
+        print "dym? %s" % repr(suggestion).encode('utf-8')
+        
         results = author_results + title_results + text_phrase + everywhere
         results.sort(reverse=True)
         
         results = author_results + title_results + text_phrase + everywhere
         results.sort(reverse=True)