pylucene 3.5.0-3
[pylucene.git] / lucene-java-3.5.0 / lucene / contrib / analyzers / common / src / java / org / apache / lucene / analysis / compound / hyphenation / TernaryTree.java
diff --git a/lucene-java-3.5.0/lucene/contrib/analyzers/common/src/java/org/apache/lucene/analysis/compound/hyphenation/TernaryTree.java b/lucene-java-3.5.0/lucene/contrib/analyzers/common/src/java/org/apache/lucene/analysis/compound/hyphenation/TernaryTree.java
new file mode 100644 (file)
index 0000000..61a68f7
--- /dev/null
@@ -0,0 +1,665 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ * 
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ * 
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.lucene.analysis.compound.hyphenation;
+
+import java.util.Enumeration;
+import java.util.Stack;
+import java.io.Serializable;
+
+/**
+ * <h2>Ternary Search Tree.</h2>
+ * 
+ * <p>
+ * A ternary search tree is a hybrid between a binary tree and a digital search
+ * tree (trie). Keys are limited to strings. A data value of type char is stored
+ * in each leaf node. It can be used as an index (or pointer) to the data.
+ * Branches that only contain one key are compressed to one node by storing a
+ * pointer to the trailer substring of the key. This class is intended to serve
+ * as base class or helper class to implement Dictionary collections or the
+ * like. Ternary trees have some nice properties as the following: the tree can
+ * be traversed in sorted order, partial matches (wildcard) can be implemented,
+ * retrieval of all keys within a given distance from the target, etc. The
+ * storage requirements are higher than a binary tree but a lot less than a
+ * trie. Performance is comparable with a hash table, sometimes it outperforms a
+ * hash function (most of the time can determine a miss faster than a hash).
+ * </p>
+ * 
+ * <p>
+ * The main purpose of this java port is to serve as a base for implementing
+ * TeX's hyphenation algorithm (see The TeXBook, appendix H). Each language
+ * requires from 5000 to 15000 hyphenation patterns which will be keys in this
+ * tree. The strings patterns are usually small (from 2 to 5 characters), but
+ * each char in the tree is stored in a node. Thus memory usage is the main
+ * concern. We will sacrifice 'elegance' to keep memory requirements to the
+ * minimum. Using java's char type as pointer (yes, I know pointer it is a
+ * forbidden word in java) we can keep the size of the node to be just 8 bytes
+ * (3 pointers and the data char). This gives room for about 65000 nodes. In my
+ * tests the english patterns took 7694 nodes and the german patterns 10055
+ * nodes, so I think we are safe.
+ * </p>
+ * 
+ * <p>
+ * All said, this is a map with strings as keys and char as value. Pretty
+ * limited!. It can be extended to a general map by using the string
+ * representation of an object and using the char value as an index to an array
+ * that contains the object values.
+ * </p>
+ * 
+ * This class has been taken from the Apache FOP project (http://xmlgraphics.apache.org/fop/). They have been slightly modified. 
+ */
+
+public class TernaryTree implements Cloneable, Serializable {
+
+  /**
+   * We use 4 arrays to represent a node. I guess I should have created a proper
+   * node class, but somehow Knuth's pascal code made me forget we now have a
+   * portable language with virtual memory management and automatic garbage
+   * collection! And now is kind of late, furthermore, if it ain't broken, don't
+   * fix it.
+   */
+
+  /**
+   * Pointer to low branch and to rest of the key when it is stored directly in
+   * this node, we don't have unions in java!
+   */
+  protected char[] lo;
+
+  /**
+   * Pointer to high branch.
+   */
+  protected char[] hi;
+
+  /**
+   * Pointer to equal branch and to data when this node is a string terminator.
+   */
+  protected char[] eq;
+
+  /**
+   * <P>
+   * The character stored in this node: splitchar. Two special values are
+   * reserved:
+   * </P>
+   * <ul>
+   * <li>0x0000 as string terminator</li>
+   * <li>0xFFFF to indicate that the branch starting at this node is compressed</li>
+   * </ul>
+   * <p>
+   * This shouldn't be a problem if we give the usual semantics to strings since
+   * 0xFFFF is guaranteed not to be an Unicode character.
+   * </p>
+   */
+  protected char[] sc;
+
+  /**
+   * This vector holds the trailing of the keys when the branch is compressed.
+   */
+  protected CharVector kv;
+
+  protected char root;
+
+  protected char freenode;
+
+  protected int length; // number of items in tree
+
+  protected static final int BLOCK_SIZE = 2048; // allocation size for arrays
+
+  TernaryTree() {
+    init();
+  }
+
+  protected void init() {
+    root = 0;
+    freenode = 1;
+    length = 0;
+    lo = new char[BLOCK_SIZE];
+    hi = new char[BLOCK_SIZE];
+    eq = new char[BLOCK_SIZE];
+    sc = new char[BLOCK_SIZE];
+    kv = new CharVector();
+  }
+
+  /**
+   * Branches are initially compressed, needing one node per key plus the size
+   * of the string key. They are decompressed as needed when another key with
+   * same prefix is inserted. This saves a lot of space, specially for long
+   * keys.
+   */
+  public void insert(String key, char val) {
+    // make sure we have enough room in the arrays
+    int len = key.length() + 1; // maximum number of nodes that may be generated
+    if (freenode + len > eq.length) {
+      redimNodeArrays(eq.length + BLOCK_SIZE);
+    }
+    char strkey[] = new char[len--];
+    key.getChars(0, len, strkey, 0);
+    strkey[len] = 0;
+    root = insert(root, strkey, 0, val);
+  }
+
+  public void insert(char[] key, int start, char val) {
+    int len = strlen(key) + 1;
+    if (freenode + len > eq.length) {
+      redimNodeArrays(eq.length + BLOCK_SIZE);
+    }
+    root = insert(root, key, start, val);
+  }
+
+  /**
+   * The actual insertion function, recursive version.
+   */
+  private char insert(char p, char[] key, int start, char val) {
+    int len = strlen(key, start);
+    if (p == 0) {
+      // this means there is no branch, this node will start a new branch.
+      // Instead of doing that, we store the key somewhere else and create
+      // only one node with a pointer to the key
+      p = freenode++;
+      eq[p] = val; // holds data
+      length++;
+      hi[p] = 0;
+      if (len > 0) {
+        sc[p] = 0xFFFF; // indicates branch is compressed
+        lo[p] = (char) kv.alloc(len + 1); // use 'lo' to hold pointer to key
+        strcpy(kv.getArray(), lo[p], key, start);
+      } else {
+        sc[p] = 0;
+        lo[p] = 0;
+      }
+      return p;
+    }
+
+    if (sc[p] == 0xFFFF) {
+      // branch is compressed: need to decompress
+      // this will generate garbage in the external key array
+      // but we can do some garbage collection later
+      char pp = freenode++;
+      lo[pp] = lo[p]; // previous pointer to key
+      eq[pp] = eq[p]; // previous pointer to data
+      lo[p] = 0;
+      if (len > 0) {
+        sc[p] = kv.get(lo[pp]);
+        eq[p] = pp;
+        lo[pp]++;
+        if (kv.get(lo[pp]) == 0) {
+          // key completly decompressed leaving garbage in key array
+          lo[pp] = 0;
+          sc[pp] = 0;
+          hi[pp] = 0;
+        } else {
+          // we only got first char of key, rest is still there
+          sc[pp] = 0xFFFF;
+        }
+      } else {
+        // In this case we can save a node by swapping the new node
+        // with the compressed node
+        sc[pp] = 0xFFFF;
+        hi[p] = pp;
+        sc[p] = 0;
+        eq[p] = val;
+        length++;
+        return p;
+      }
+    }
+    char s = key[start];
+    if (s < sc[p]) {
+      lo[p] = insert(lo[p], key, start, val);
+    } else if (s == sc[p]) {
+      if (s != 0) {
+        eq[p] = insert(eq[p], key, start + 1, val);
+      } else {
+        // key already in tree, overwrite data
+        eq[p] = val;
+      }
+    } else {
+      hi[p] = insert(hi[p], key, start, val);
+    }
+    return p;
+  }
+
+  /**
+   * Compares 2 null terminated char arrays
+   */
+  public static int strcmp(char[] a, int startA, char[] b, int startB) {
+    for (; a[startA] == b[startB]; startA++, startB++) {
+      if (a[startA] == 0) {
+        return 0;
+      }
+    }
+    return a[startA] - b[startB];
+  }
+
+  /**
+   * Compares a string with null terminated char array
+   */
+  public static int strcmp(String str, char[] a, int start) {
+    int i, d, len = str.length();
+    for (i = 0; i < len; i++) {
+      d = (int) str.charAt(i) - a[start + i];
+      if (d != 0) {
+        return d;
+      }
+      if (a[start + i] == 0) {
+        return d;
+      }
+    }
+    if (a[start + i] != 0) {
+      return -a[start + i];
+    }
+    return 0;
+
+  }
+
+  public static void strcpy(char[] dst, int di, char[] src, int si) {
+    while (src[si] != 0) {
+      dst[di++] = src[si++];
+    }
+    dst[di] = 0;
+  }
+
+  public static int strlen(char[] a, int start) {
+    int len = 0;
+    for (int i = start; i < a.length && a[i] != 0; i++) {
+      len++;
+    }
+    return len;
+  }
+
+  public static int strlen(char[] a) {
+    return strlen(a, 0);
+  }
+
+  public int find(String key) {
+    int len = key.length();
+    char strkey[] = new char[len + 1];
+    key.getChars(0, len, strkey, 0);
+    strkey[len] = 0;
+
+    return find(strkey, 0);
+  }
+
+  public int find(char[] key, int start) {
+    int d;
+    char p = root;
+    int i = start;
+    char c;
+
+    while (p != 0) {
+      if (sc[p] == 0xFFFF) {
+        if (strcmp(key, i, kv.getArray(), lo[p]) == 0) {
+          return eq[p];
+        } else {
+          return -1;
+        }
+      }
+      c = key[i];
+      d = c - sc[p];
+      if (d == 0) {
+        if (c == 0) {
+          return eq[p];
+        }
+        i++;
+        p = eq[p];
+      } else if (d < 0) {
+        p = lo[p];
+      } else {
+        p = hi[p];
+      }
+    }
+    return -1;
+  }
+
+  public boolean knows(String key) {
+    return (find(key) >= 0);
+  }
+
+  // redimension the arrays
+  private void redimNodeArrays(int newsize) {
+    int len = newsize < lo.length ? newsize : lo.length;
+    char[] na = new char[newsize];
+    System.arraycopy(lo, 0, na, 0, len);
+    lo = na;
+    na = new char[newsize];
+    System.arraycopy(hi, 0, na, 0, len);
+    hi = na;
+    na = new char[newsize];
+    System.arraycopy(eq, 0, na, 0, len);
+    eq = na;
+    na = new char[newsize];
+    System.arraycopy(sc, 0, na, 0, len);
+    sc = na;
+  }
+
+  public int size() {
+    return length;
+  }
+
+  @Override
+  public Object clone() {
+    TernaryTree t = new TernaryTree();
+    t.lo = this.lo.clone();
+    t.hi = this.hi.clone();
+    t.eq = this.eq.clone();
+    t.sc = this.sc.clone();
+    t.kv = (CharVector) this.kv.clone();
+    t.root = this.root;
+    t.freenode = this.freenode;
+    t.length = this.length;
+
+    return t;
+  }
+
+  /**
+   * Recursively insert the median first and then the median of the lower and
+   * upper halves, and so on in order to get a balanced tree. The array of keys
+   * is assumed to be sorted in ascending order.
+   */
+  protected void insertBalanced(String[] k, char[] v, int offset, int n) {
+    int m;
+    if (n < 1) {
+      return;
+    }
+    m = n >> 1;
+
+    insert(k[m + offset], v[m + offset]);
+    insertBalanced(k, v, offset, m);
+
+    insertBalanced(k, v, offset + m + 1, n - m - 1);
+  }
+
+  /**
+   * Balance the tree for best search performance
+   */
+  public void balance() {
+    // System.out.print("Before root splitchar = ");
+    // System.out.println(sc[root]);
+
+    int i = 0, n = length;
+    String[] k = new String[n];
+    char[] v = new char[n];
+    Iterator iter = new Iterator();
+    while (iter.hasMoreElements()) {
+      v[i] = iter.getValue();
+      k[i++] = iter.nextElement();
+    }
+    init();
+    insertBalanced(k, v, 0, n);
+
+    // With uniform letter distribution sc[root] should be around 'm'
+    // System.out.print("After root splitchar = ");
+    // System.out.println(sc[root]);
+  }
+
+  /**
+   * Each node stores a character (splitchar) which is part of some key(s). In a
+   * compressed branch (one that only contain a single string key) the trailer
+   * of the key which is not already in nodes is stored externally in the kv
+   * array. As items are inserted, key substrings decrease. Some substrings may
+   * completely disappear when the whole branch is totally decompressed. The
+   * tree is traversed to find the key substrings actually used. In addition,
+   * duplicate substrings are removed using a map (implemented with a
+   * TernaryTree!).
+   * 
+   */
+  public void trimToSize() {
+    // first balance the tree for best performance
+    balance();
+
+    // redimension the node arrays
+    redimNodeArrays(freenode);
+
+    // ok, compact kv array
+    CharVector kx = new CharVector();
+    kx.alloc(1);
+    TernaryTree map = new TernaryTree();
+    compact(kx, map, root);
+    kv = kx;
+    kv.trimToSize();
+  }
+
+  private void compact(CharVector kx, TernaryTree map, char p) {
+    int k;
+    if (p == 0) {
+      return;
+    }
+    if (sc[p] == 0xFFFF) {
+      k = map.find(kv.getArray(), lo[p]);
+      if (k < 0) {
+        k = kx.alloc(strlen(kv.getArray(), lo[p]) + 1);
+        strcpy(kx.getArray(), k, kv.getArray(), lo[p]);
+        map.insert(kx.getArray(), k, (char) k);
+      }
+      lo[p] = (char) k;
+    } else {
+      compact(kx, map, lo[p]);
+      if (sc[p] != 0) {
+        compact(kx, map, eq[p]);
+      }
+      compact(kx, map, hi[p]);
+    }
+  }
+
+  public Enumeration<String> keys() {
+    return new Iterator();
+  }
+
+  public class Iterator implements Enumeration<String> {
+
+    /**
+     * current node index
+     */
+    int cur;
+
+    /**
+     * current key
+     */
+    String curkey;
+
+    private class Item implements Cloneable {
+      char parent;
+
+      char child;
+
+      public Item() {
+        parent = 0;
+        child = 0;
+      }
+
+      public Item(char p, char c) {
+        parent = p;
+        child = c;
+      }
+
+      @Override
+      public Object clone() {
+        return new Item(parent, child);
+      }
+
+    }
+
+    /**
+     * Node stack
+     */
+    Stack<Item> ns;
+
+    /**
+     * key stack implemented with a StringBuilder
+     */
+    StringBuilder ks;
+
+    public Iterator() {
+      cur = -1;
+      ns = new Stack<Item>();
+      ks = new StringBuilder();
+      rewind();
+    }
+
+    public void rewind() {
+      ns.removeAllElements();
+      ks.setLength(0);
+      cur = root;
+      run();
+    }
+
+    public String nextElement() {
+      String res = new String(curkey);
+      cur = up();
+      run();
+      return res;
+    }
+
+    public char getValue() {
+      if (cur >= 0) {
+        return eq[cur];
+      }
+      return 0;
+    }
+
+    public boolean hasMoreElements() {
+      return (cur != -1);
+    }
+
+    /**
+     * traverse upwards
+     */
+    private int up() {
+      Item i = new Item();
+      int res = 0;
+
+      if (ns.empty()) {
+        return -1;
+      }
+
+      if (cur != 0 && sc[cur] == 0) {
+        return lo[cur];
+      }
+
+      boolean climb = true;
+
+      while (climb) {
+        i = ns.pop();
+        i.child++;
+        switch (i.child) {
+          case 1:
+            if (sc[i.parent] != 0) {
+              res = eq[i.parent];
+              ns.push((Item) i.clone());
+              ks.append(sc[i.parent]);
+            } else {
+              i.child++;
+              ns.push((Item) i.clone());
+              res = hi[i.parent];
+            }
+            climb = false;
+            break;
+
+          case 2:
+            res = hi[i.parent];
+            ns.push((Item) i.clone());
+            if (ks.length() > 0) {
+              ks.setLength(ks.length() - 1); // pop
+            }
+            climb = false;
+            break;
+
+          default:
+            if (ns.empty()) {
+              return -1;
+            }
+            climb = true;
+            break;
+        }
+      }
+      return res;
+    }
+
+    /**
+     * traverse the tree to find next key
+     */
+    private int run() {
+      if (cur == -1) {
+        return -1;
+      }
+
+      boolean leaf = false;
+      while (true) {
+        // first go down on low branch until leaf or compressed branch
+        while (cur != 0) {
+          if (sc[cur] == 0xFFFF) {
+            leaf = true;
+            break;
+          }
+          ns.push(new Item((char) cur, '\u0000'));
+          if (sc[cur] == 0) {
+            leaf = true;
+            break;
+          }
+          cur = lo[cur];
+        }
+        if (leaf) {
+          break;
+        }
+        // nothing found, go up one node and try again
+        cur = up();
+        if (cur == -1) {
+          return -1;
+        }
+      }
+      // The current node should be a data node and
+      // the key should be in the key stack (at least partially)
+      StringBuilder buf = new StringBuilder(ks.toString());
+      if (sc[cur] == 0xFFFF) {
+        int p = lo[cur];
+        while (kv.get(p) != 0) {
+          buf.append(kv.get(p++));
+        }
+      }
+      curkey = buf.toString();
+      return 0;
+    }
+
+  }
+
+  public void printStats() {
+    System.out.println("Number of keys = " + Integer.toString(length));
+    System.out.println("Node count = " + Integer.toString(freenode));
+    // System.out.println("Array length = " + Integer.toString(eq.length));
+    System.out.println("Key Array length = " + Integer.toString(kv.length()));
+
+    /*
+     * for(int i=0; i<kv.length(); i++) if ( kv.get(i) != 0 )
+     * System.out.print(kv.get(i)); else System.out.println("");
+     * System.out.println("Keys:"); for(Enumeration enum = keys();
+     * enum.hasMoreElements(); ) System.out.println(enum.nextElement());
+     */
+
+  }
+
+  public static void main(String[] args) throws Exception {
+    TernaryTree tt = new TernaryTree();
+    tt.insert("Carlos", 'C');
+    tt.insert("Car", 'r');
+    tt.insert("palos", 'l');
+    tt.insert("pa", 'p');
+    tt.trimToSize();
+    System.out.println((char) tt.find("Car"));
+    System.out.println((char) tt.find("Carlos"));
+    System.out.println((char) tt.find("alto"));
+    tt.printStats();
+  }
+
+}