X-Git-Url: https://git.mdrn.pl/wl-app.git/blobdiff_plain/53b27422d140022594fc241cca91c3183be57bca..48b2fe9f7c2dc3d9aeaaa6dbfb27c7da4f3235ff:/iOS/Pods/SSZipArchive/SSZipArchive/minizip/aes/aesopt.h diff --git a/iOS/Pods/SSZipArchive/SSZipArchive/minizip/aes/aesopt.h b/iOS/Pods/SSZipArchive/SSZipArchive/minizip/aes/aesopt.h new file mode 100644 index 0000000..3678e74 --- /dev/null +++ b/iOS/Pods/SSZipArchive/SSZipArchive/minizip/aes/aesopt.h @@ -0,0 +1,776 @@ +/* +--------------------------------------------------------------------------- +Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved. + +The redistribution and use of this software (with or without changes) +is allowed without the payment of fees or royalties provided that: + + source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation. + +This software is provided 'as is' with no explicit or implied warranties +in respect of its operation, including, but not limited to, correctness +and fitness for purpose. +--------------------------------------------------------------------------- +Issue Date: 20/12/2007 + + This file contains the compilation options for AES (Rijndael) and code + that is common across encryption, key scheduling and table generation. + + OPERATION + + These source code files implement the AES algorithm Rijndael designed by + Joan Daemen and Vincent Rijmen. This version is designed for the standard + block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 + and 32 bytes). + + This version is designed for flexibility and speed using operations on + 32-bit words rather than operations on bytes. It can be compiled with + either big or little endian internal byte order but is faster when the + native byte order for the processor is used. + + THE CIPHER INTERFACE + + The cipher interface is implemented as an array of bytes in which lower + AES bit sequence indexes map to higher numeric significance within bytes. + + uint8_t (an unsigned 8-bit type) + uint32_t (an unsigned 32-bit type) + struct aes_encrypt_ctx (structure for the cipher encryption context) + struct aes_decrypt_ctx (structure for the cipher decryption context) + AES_RETURN the function return type + + C subroutine calls: + + AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, + const aes_encrypt_ctx cx[1]); + + AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, + const aes_decrypt_ctx cx[1]); + + IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that + you call aes_init() before AES is used so that the tables are initialised. + + C++ aes class subroutines: + + Class AESencrypt for encryption + + Construtors: + AESencrypt(void) + AESencrypt(const unsigned char *key) - 128 bit key + Members: + AES_RETURN key128(const unsigned char *key) + AES_RETURN key192(const unsigned char *key) + AES_RETURN key256(const unsigned char *key) + AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const + + Class AESdecrypt for encryption + Construtors: + AESdecrypt(void) + AESdecrypt(const unsigned char *key) - 128 bit key + Members: + AES_RETURN key128(const unsigned char *key) + AES_RETURN key192(const unsigned char *key) + AES_RETURN key256(const unsigned char *key) + AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const +*/ + +#if !defined( _AESOPT_H ) +#define _AESOPT_H + +#if defined( __cplusplus ) +#include "aescpp.h" +#else +#include "aes.h" +#endif + +/* PLATFORM SPECIFIC INCLUDES */ + +#include "brg_endian.h" + +/* CONFIGURATION - THE USE OF DEFINES + + Later in this section there are a number of defines that control the + operation of the code. In each section, the purpose of each define is + explained so that the relevant form can be included or excluded by + setting either 1's or 0's respectively on the branches of the related + #if clauses. The following local defines should not be changed. +*/ + +#define ENCRYPTION_IN_C 1 +#define DECRYPTION_IN_C 2 +#define ENC_KEYING_IN_C 4 +#define DEC_KEYING_IN_C 8 + +#define NO_TABLES 0 +#define ONE_TABLE 1 +#define FOUR_TABLES 4 +#define NONE 0 +#define PARTIAL 1 +#define FULL 2 + +/* --- START OF USER CONFIGURED OPTIONS --- */ + +/* 1. BYTE ORDER WITHIN 32 BIT WORDS + + The fundamental data processing units in Rijndael are 8-bit bytes. The + input, output and key input are all enumerated arrays of bytes in which + bytes are numbered starting at zero and increasing to one less than the + number of bytes in the array in question. This enumeration is only used + for naming bytes and does not imply any adjacency or order relationship + from one byte to another. When these inputs and outputs are considered + as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to + byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. + In this implementation bits are numbered from 0 to 7 starting at the + numerically least significant end of each byte (bit n represents 2^n). + + However, Rijndael can be implemented more efficiently using 32-bit + words by packing bytes into words so that bytes 4*n to 4*n+3 are placed + into word[n]. While in principle these bytes can be assembled into words + in any positions, this implementation only supports the two formats in + which bytes in adjacent positions within words also have adjacent byte + numbers. This order is called big-endian if the lowest numbered bytes + in words have the highest numeric significance and little-endian if the + opposite applies. + + This code can work in either order irrespective of the order used by the + machine on which it runs. Normally the internal byte order will be set + to the order of the processor on which the code is to be run but this + define can be used to reverse this in special situations + + WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set. + This define will hence be redefined later (in section 4) if necessary +*/ + +#if 1 +# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER +#elif 0 +# define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN +#elif 0 +# define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN +#else +# error The algorithm byte order is not defined +#endif + +/* 2. Intel AES AND VIA ACE SUPPORT */ + +#if defined( __GNUC__ ) && defined( __i386__ ) \ + || defined( _WIN32 ) && defined( _M_IX86 ) && !(defined( _WIN64 ) \ + || defined( _WIN32_WCE ) || defined( _MSC_VER ) && ( _MSC_VER <= 800 )) +# define VIA_ACE_POSSIBLE +#endif + +#if (defined( _WIN64 ) && defined( _MSC_VER )) \ + || (defined( __GNUC__ ) && defined( __x86_64__ )) && !(defined( __APPLE__ ))\ + && !(defined( INTEL_AES_POSSIBLE )) +# define INTEL_AES_POSSIBLE +#endif + +/* Define this option if support for the Intel AESNI is required + If USE_INTEL_AES_IF_PRESENT is defined then AESNI will be used + if it is detected (both present and enabled). + + AESNI uses a decryption key schedule with the first decryption + round key at the high end of the key scedule with the following + round keys at lower positions in memory. So AES_REV_DKS must NOT + be defined when AESNI will be used. ALthough it is unlikely that + assembler code will be used with an AESNI build, if it is then + AES_REV_DKS must NOT be defined when the assembler files are + built +*/ + +#if 1 && defined( INTEL_AES_POSSIBLE ) && !defined( USE_INTEL_AES_IF_PRESENT ) +# define USE_INTEL_AES_IF_PRESENT +#endif + +/* Define this option if support for the VIA ACE is required. This uses + inline assembler instructions and is only implemented for the Microsoft, + Intel and GCC compilers. If VIA ACE is known to be present, then defining + ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption + code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if + it is detected (both present and enabled) but the normal AES code will + also be present. + + When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte + aligned; other input/output buffers do not need to be 16 byte aligned + but there are very large performance gains if this can be arranged. + VIA ACE also requires the decryption key schedule to be in reverse + order (which later checks below ensure). + + AES_REV_DKS must be set for assembler code used with a VIA ACE build +*/ + +#if 0 && defined( VIA_ACE_POSSIBLE ) && !defined( USE_VIA_ACE_IF_PRESENT ) +# define USE_VIA_ACE_IF_PRESENT +#endif + +#if 0 && defined( VIA_ACE_POSSIBLE ) && !defined( ASSUME_VIA_ACE_PRESENT ) +# define ASSUME_VIA_ACE_PRESENT +# endif + +/* 3. ASSEMBLER SUPPORT + + This define (which can be on the command line) enables the use of the + assembler code routines for encryption, decryption and key scheduling + as follows: + + ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for + encryption and decryption and but with key scheduling in C + ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for + encryption, decryption and key scheduling + ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for + encryption and decryption and but with key scheduling in C + ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for + encryption and decryption and but with key scheduling in C + + Change one 'if 0' below to 'if 1' to select the version or define + as a compilation option. +*/ + +#if 0 && !defined( ASM_X86_V1C ) +# define ASM_X86_V1C +#elif 0 && !defined( ASM_X86_V2 ) +# define ASM_X86_V2 +#elif 0 && !defined( ASM_X86_V2C ) +# define ASM_X86_V2C +#elif 0 && !defined( ASM_AMD64_C ) +# define ASM_AMD64_C +#endif + +#if defined( __i386 ) || defined( _M_IX86 ) +# define A32_ +#elif defined( __x86_64__ ) || defined( _M_X64 ) +# define A64_ +#endif + +#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \ + && !defined( A32_ ) || defined( ASM_AMD64_C ) && !defined( A64_ ) +# error Assembler code is only available for x86 and AMD64 systems +#endif + +/* 4. FAST INPUT/OUTPUT OPERATIONS. + + On some machines it is possible to improve speed by transferring the + bytes in the input and output arrays to and from the internal 32-bit + variables by addressing these arrays as if they are arrays of 32-bit + words. On some machines this will always be possible but there may + be a large performance penalty if the byte arrays are not aligned on + the normal word boundaries. On other machines this technique will + lead to memory access errors when such 32-bit word accesses are not + properly aligned. The option SAFE_IO avoids such problems but will + often be slower on those machines that support misaligned access + (especially so if care is taken to align the input and output byte + arrays on 32-bit word boundaries). If SAFE_IO is not defined it is + assumed that access to byte arrays as if they are arrays of 32-bit + words will not cause problems when such accesses are misaligned. +*/ +#if 1 && !defined( _MSC_VER ) +# define SAFE_IO +#endif + +/* 5. LOOP UNROLLING + + The code for encryption and decrytpion cycles through a number of rounds + that can be implemented either in a loop or by expanding the code into a + long sequence of instructions, the latter producing a larger program but + one that will often be much faster. The latter is called loop unrolling. + There are also potential speed advantages in expanding two iterations in + a loop with half the number of iterations, which is called partial loop + unrolling. The following options allow partial or full loop unrolling + to be set independently for encryption and decryption +*/ +#if 1 +# define ENC_UNROLL FULL +#elif 0 +# define ENC_UNROLL PARTIAL +#else +# define ENC_UNROLL NONE +#endif + +#if 1 +# define DEC_UNROLL FULL +#elif 0 +# define DEC_UNROLL PARTIAL +#else +# define DEC_UNROLL NONE +#endif + +#if 1 +# define ENC_KS_UNROLL +#endif + +#if 1 +# define DEC_KS_UNROLL +#endif + +/* 6. FAST FINITE FIELD OPERATIONS + + If this section is included, tables are used to provide faster finite + field arithmetic (this has no effect if STATIC_TABLES is defined). +*/ +#if 1 +# define FF_TABLES +#endif + +/* 7. INTERNAL STATE VARIABLE FORMAT + + The internal state of Rijndael is stored in a number of local 32-bit + word varaibles which can be defined either as an array or as individual + names variables. Include this section if you want to store these local + varaibles in arrays. Otherwise individual local variables will be used. +*/ +#if 1 +# define ARRAYS +#endif + +/* 8. FIXED OR DYNAMIC TABLES + + When this section is included the tables used by the code are compiled + statically into the binary file. Otherwise the subroutine aes_init() + must be called to compute them before the code is first used. +*/ +#if 1 && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 )) +# define STATIC_TABLES +#endif + +/* 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES + + In some systems it is better to mask longer values to extract bytes + rather than using a cast. This option allows this choice. +*/ +#if 0 +# define to_byte(x) ((uint8_t)(x)) +#else +# define to_byte(x) ((x) & 0xff) +#endif + +/* 10. TABLE ALIGNMENT + + On some sytsems speed will be improved by aligning the AES large lookup + tables on particular boundaries. This define should be set to a power of + two giving the desired alignment. It can be left undefined if alignment + is not needed. This option is specific to the Microsft VC++ compiler - + it seems to sometimes cause trouble for the VC++ version 6 compiler. +*/ + +#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 ) +# define TABLE_ALIGN 32 +#endif + +/* 11. REDUCE CODE AND TABLE SIZE + + This replaces some expanded macros with function calls if AES_ASM_V2 or + AES_ASM_V2C are defined +*/ + +#if 1 && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) +# define REDUCE_CODE_SIZE +#endif + +/* 12. TABLE OPTIONS + + This cipher proceeds by repeating in a number of cycles known as 'rounds' + which are implemented by a round function which can optionally be speeded + up using tables. The basic tables are each 256 32-bit words, with either + one or four tables being required for each round function depending on + how much speed is required. The encryption and decryption round functions + are different and the last encryption and decrytpion round functions are + different again making four different round functions in all. + + This means that: + 1. Normal encryption and decryption rounds can each use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + 2. The last encryption and decryption rounds can also use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + + Include or exclude the appropriate definitions below to set the number + of tables used by this implementation. +*/ + +#if 1 /* set tables for the normal encryption round */ +# define ENC_ROUND FOUR_TABLES +#elif 0 +# define ENC_ROUND ONE_TABLE +#else +# define ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last encryption round */ +# define LAST_ENC_ROUND FOUR_TABLES +#elif 0 +# define LAST_ENC_ROUND ONE_TABLE +#else +# define LAST_ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the normal decryption round */ +# define DEC_ROUND FOUR_TABLES +#elif 0 +# define DEC_ROUND ONE_TABLE +#else +# define DEC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last decryption round */ +# define LAST_DEC_ROUND FOUR_TABLES +#elif 0 +# define LAST_DEC_ROUND ONE_TABLE +#else +# define LAST_DEC_ROUND NO_TABLES +#endif + +/* The decryption key schedule can be speeded up with tables in the same + way that the round functions can. Include or exclude the following + defines to set this requirement. +*/ +#if 1 +# define KEY_SCHED FOUR_TABLES +#elif 0 +# define KEY_SCHED ONE_TABLE +#else +# define KEY_SCHED NO_TABLES +#endif + +/* ---- END OF USER CONFIGURED OPTIONS ---- */ + +/* VIA ACE support is only available for VC++ and GCC */ + +#if !defined( _MSC_VER ) && !defined( __GNUC__ ) +# if defined( ASSUME_VIA_ACE_PRESENT ) +# undef ASSUME_VIA_ACE_PRESENT +# endif +# if defined( USE_VIA_ACE_IF_PRESENT ) +# undef USE_VIA_ACE_IF_PRESENT +# endif +#endif + +#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT ) +# define USE_VIA_ACE_IF_PRESENT +#endif + +/* define to reverse decryption key schedule */ +#if 1 || defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS ) +# define AES_REV_DKS +#endif + +/* Intel AESNI uses a decryption key schedule in the encryption order */ +#if defined( USE_INTEL_AES_IF_PRESENT ) && defined ( AES_REV_DKS ) +# undef AES_REV_DKS +#endif + +/* Assembler support requires the use of platform byte order */ + +#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \ + && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER) +# undef ALGORITHM_BYTE_ORDER +# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER +#endif + +/* In this implementation the columns of the state array are each held in + 32-bit words. The state array can be held in various ways: in an array + of words, in a number of individual word variables or in a number of + processor registers. The following define maps a variable name x and + a column number c to the way the state array variable is to be held. + The first define below maps the state into an array x[c] whereas the + second form maps the state into a number of individual variables x0, + x1, etc. Another form could map individual state colums to machine + register names. +*/ + +#if defined( ARRAYS ) +# define s(x,c) x[c] +#else +# define s(x,c) x##c +#endif + +/* This implementation provides subroutines for encryption, decryption + and for setting the three key lengths (separately) for encryption + and decryption. Since not all functions are needed, masks are set + up here to determine which will be implemented in C +*/ + +#if !defined( AES_ENCRYPT ) +# define EFUNCS_IN_C 0 +#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ + || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) +# define EFUNCS_IN_C ENC_KEYING_IN_C +#elif !defined( ASM_X86_V2 ) +# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C ) +#else +# define EFUNCS_IN_C 0 +#endif + +#if !defined( AES_DECRYPT ) +# define DFUNCS_IN_C 0 +#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ + || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) +# define DFUNCS_IN_C DEC_KEYING_IN_C +#elif !defined( ASM_X86_V2 ) +# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C ) +#else +# define DFUNCS_IN_C 0 +#endif + +#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C ) + +/* END OF CONFIGURATION OPTIONS */ + +#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2)) + +/* Disable or report errors on some combinations of options */ + +#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES +# undef LAST_ENC_ROUND +# define LAST_ENC_ROUND NO_TABLES +#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES +# undef LAST_ENC_ROUND +# define LAST_ENC_ROUND ONE_TABLE +#endif + +#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE +# undef ENC_UNROLL +# define ENC_UNROLL NONE +#endif + +#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES +# undef LAST_DEC_ROUND +# define LAST_DEC_ROUND NO_TABLES +#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES +# undef LAST_DEC_ROUND +# define LAST_DEC_ROUND ONE_TABLE +#endif + +#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE +# undef DEC_UNROLL +# define DEC_UNROLL NONE +#endif + +#if defined( bswap32 ) +# define aes_sw32 bswap32 +#elif defined( bswap_32 ) +# define aes_sw32 bswap_32 +#else +# define brot(x,n) (((uint32_t)(x) << n) | ((uint32_t)(x) >> (32 - n))) +# define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00)) +#endif + +/* upr(x,n): rotates bytes within words by n positions, moving bytes to + higher index positions with wrap around into low positions + ups(x,n): moves bytes by n positions to higher index positions in + words but without wrap around + bval(x,n): extracts a byte from a word + + WARNING: The definitions given here are intended only for use with + unsigned variables and with shift counts that are compile + time constants +*/ + +#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN ) +# define upr(x,n) (((uint32_t)(x) << (8 * (n))) | ((uint32_t)(x) >> (32 - 8 * (n)))) +# define ups(x,n) ((uint32_t) (x) << (8 * (n))) +# define bval(x,n) to_byte((x) >> (8 * (n))) +# define bytes2word(b0, b1, b2, b3) \ + (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | (b0)) +#endif + +#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN ) +# define upr(x,n) (((uint32_t)(x) >> (8 * (n))) | ((uint32_t)(x) << (32 - 8 * (n)))) +# define ups(x,n) ((uint32_t) (x) >> (8 * (n))) +# define bval(x,n) to_byte((x) >> (24 - 8 * (n))) +# define bytes2word(b0, b1, b2, b3) \ + (((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | ((uint32_t)(b2) << 8) | (b3)) +#endif + +#if defined( SAFE_IO ) +# define word_in(x,c) bytes2word(((const uint8_t*)(x)+4*c)[0], ((const uint8_t*)(x)+4*c)[1], \ + ((const uint8_t*)(x)+4*c)[2], ((const uint8_t*)(x)+4*c)[3]) +# define word_out(x,c,v) { ((uint8_t*)(x)+4*c)[0] = bval(v,0); ((uint8_t*)(x)+4*c)[1] = bval(v,1); \ + ((uint8_t*)(x)+4*c)[2] = bval(v,2); ((uint8_t*)(x)+4*c)[3] = bval(v,3); } +#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER ) +# define word_in(x,c) (*((uint32_t*)(x)+(c))) +# define word_out(x,c,v) (*((uint32_t*)(x)+(c)) = (v)) +#else +# define word_in(x,c) aes_sw32(*((uint32_t*)(x)+(c))) +# define word_out(x,c,v) (*((uint32_t*)(x)+(c)) = aes_sw32(v)) +#endif + +/* the finite field modular polynomial and elements */ + +#define WPOLY 0x011b +#define BPOLY 0x1b + +/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ + +#define gf_c1 0x80808080 +#define gf_c2 0x7f7f7f7f +#define gf_mulx(x) ((((x) & gf_c2) << 1) ^ ((((x) & gf_c1) >> 7) * BPOLY)) + +/* The following defines provide alternative definitions of gf_mulx that might + give improved performance if a fast 32-bit multiply is not available. Note + that a temporary variable u needs to be defined where gf_mulx is used. + +#define gf_mulx(x) (u = (x) & gf_c1, u |= (u >> 1), ((x) & gf_c2) << 1) ^ ((u >> 3) | (u >> 6)) +#define gf_c4 (0x01010101 * BPOLY) +#define gf_mulx(x) (u = (x) & gf_c1, ((x) & gf_c2) << 1) ^ ((u - (u >> 7)) & gf_c4) +*/ + +/* Work out which tables are needed for the different options */ + +#if defined( ASM_X86_V1C ) +# if defined( ENC_ROUND ) +# undef ENC_ROUND +# endif +# define ENC_ROUND FOUR_TABLES +# if defined( LAST_ENC_ROUND ) +# undef LAST_ENC_ROUND +# endif +# define LAST_ENC_ROUND FOUR_TABLES +# if defined( DEC_ROUND ) +# undef DEC_ROUND +# endif +# define DEC_ROUND FOUR_TABLES +# if defined( LAST_DEC_ROUND ) +# undef LAST_DEC_ROUND +# endif +# define LAST_DEC_ROUND FOUR_TABLES +# if defined( KEY_SCHED ) +# undef KEY_SCHED +# define KEY_SCHED FOUR_TABLES +# endif +#endif + +#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C ) +# if ENC_ROUND == ONE_TABLE +# define FT1_SET +# elif ENC_ROUND == FOUR_TABLES +# define FT4_SET +# else +# define SBX_SET +# endif +# if LAST_ENC_ROUND == ONE_TABLE +# define FL1_SET +# elif LAST_ENC_ROUND == FOUR_TABLES +# define FL4_SET +# elif !defined( SBX_SET ) +# define SBX_SET +# endif +#endif + +#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C ) +# if DEC_ROUND == ONE_TABLE +# define IT1_SET +# elif DEC_ROUND == FOUR_TABLES +# define IT4_SET +# else +# define ISB_SET +# endif +# if LAST_DEC_ROUND == ONE_TABLE +# define IL1_SET +# elif LAST_DEC_ROUND == FOUR_TABLES +# define IL4_SET +# elif !defined(ISB_SET) +# define ISB_SET +# endif +#endif + +#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C ))) +# if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)) +# if KEY_SCHED == ONE_TABLE +# if !defined( FL1_SET ) && !defined( FL4_SET ) +# define LS1_SET +# endif +# elif KEY_SCHED == FOUR_TABLES +# if !defined( FL4_SET ) +# define LS4_SET +# endif +# elif !defined( SBX_SET ) +# define SBX_SET +# endif +# endif +# if (FUNCS_IN_C & DEC_KEYING_IN_C) +# if KEY_SCHED == ONE_TABLE +# define IM1_SET +# elif KEY_SCHED == FOUR_TABLES +# define IM4_SET +# elif !defined( SBX_SET ) +# define SBX_SET +# endif +# endif +#endif + +/* generic definitions of Rijndael macros that use tables */ + +#define no_table(x,box,vf,rf,c) bytes2word( \ + box[bval(vf(x,0,c),rf(0,c))], \ + box[bval(vf(x,1,c),rf(1,c))], \ + box[bval(vf(x,2,c),rf(2,c))], \ + box[bval(vf(x,3,c),rf(3,c))]) + +#define one_table(x,op,tab,vf,rf,c) \ + ( tab[bval(vf(x,0,c),rf(0,c))] \ + ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ + ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ + ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) + +#define four_tables(x,tab,vf,rf,c) \ + ( tab[0][bval(vf(x,0,c),rf(0,c))] \ + ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ + ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ + ^ tab[3][bval(vf(x,3,c),rf(3,c))]) + +#define vf1(x,r,c) (x) +#define rf1(r,c) (r) +#define rf2(r,c) ((8+r-c)&3) + +/* perform forward and inverse column mix operation on four bytes in long word x in */ +/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ + +#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C ))) + +#if defined( FM4_SET ) /* not currently used */ +# define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0) +#elif defined( FM1_SET ) /* not currently used */ +# define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0) +#else +# define dec_fmvars uint32_t g2 +# define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1)) +#endif + +#if defined( IM4_SET ) +# define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0) +#elif defined( IM1_SET ) +# define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0) +#else +# define dec_imvars uint32_t g2, g4, g9 +# define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \ + (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1)) +#endif + +#if defined( FL4_SET ) +# define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c) +#elif defined( LS4_SET ) +# define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c) +#elif defined( FL1_SET ) +# define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c) +#elif defined( LS1_SET ) +# define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c) +#else +# define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c) +#endif + +#endif + +#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET ) +# define ISB_SET +#endif + +#endif