JCC Features

Table of contents

LINSLAIING JCC.....eiee et bbbt bt e et e bbb e e eae s 2
28 1Yo (] o N G SRS 2
3 Generating C++ and Python wrappers With JCC...........cocveiiiiee e 2
4 Classpath CONSIAEIAtiONS..........cueiieieiieseesie ettt s sreeae e e sreeresneesneennens 5
5 USING diStUtilS VS SEIUPLOOIS.......ccveeieceee e 5
6 DIStITDULING @N BJQ. ..+ttt b e et b b e nne e 5
7 JCC'sruntime API FUNCLIONS........coiiiieiiesieee et 6
8 Type casting and iNStanCe ChECKS...........coiiiir e 7
9 HaNAliNG GENENTC ClASSES.......ciiieeiiie ittt e e sbe e st e e nbeeennas 8
Ol o F= 1 | TT o I = (YA S 9
11 EXCEPLION FEPOMING. ... e iveeveeieeeesteesieete st e ste et et e st e e sae s e aeeseesseesteeaesseesseenseeneesseensenneens 11
12 Writing Java class extensions in Python...........cccccoiiinnneeeeeee s 11
13 Embedding a Python VM in@JaVaVM........ccccciiiineeceese e 13

14 PYthONIC PrOLOCOIS......oveeeeeiieeiteeieeee sttt et e s e sae e e e sneeseesneesnes 14




JCC Features

Before calling any PyLucene API that requiresthe JavaVM, start it by callingi ni t VM cl asspat h, ...).Moreabout
thisfunction in here.

1. Installing JCC

JCC is aPython extension written in Python and C++. It requires a Java Runtime
Environment (JRE) to operate as it uses Javas reflection APIsto do itswork. It is built and
installed viadi stuti | s orset upt ool s.

See ingtallation for more information and operating system specific notes.

2. Invoking JCC

JCCisinstalled as a package and how to invoke it depends on the Python version used:

python 2.7: pyt hon -mj cc

python 2.6: python -mjcc. _main

python 2.5: pyt hon -mj cc

python 2.4:

* no setuptools: pyt hon site-packages/jcc/ __init__.py

» with setuptools. pyt hon si t e- packages/j cc egg
directory/jcc/ __init__.py

« python 2.3: pyt hon site-packages/j cc egg
directory/jcc/ __init__.py

3. Generating C++ and Python wrapperswith JCC

JCC started as a C++ code generator for hiding the gory details of accessing methods and
fields on Java classes via Java's Native Invocation Interface. These C++ wrappers make it
possible to access a Java object asif it was aregular C++ object very much like GCJs CNI
interface.

It then became apparent that JCC could also generate the C++ wrappers for making these
classes available to Python. Every class that gets thus wrapped becomes a CPython type.

JCC generates wrappers for all public classes that are requested by name on the command
lineor viathe- - j ar command line argument. It generates wrapper methods for all public
methods and fields on these classes whose return type and parameter types are found in one
of the following ways:

Page 2


../../jcc/documentation/install.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/invocation.html
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://docs.python.org/ext/defining-new-types.html

JCC Features

» thetypeisone of the requested classes

» thetypeisone of the requested classes superclass or implemented interfaces

» thetypeisavailable from one of the packageslisted viathe - - package command line
argument

Overloaded methods are supported and are selected at runtime on the basis of the type and
number of arguments passed in.

JCC does not generate wrappers for methods or fields which don't satisfy these requirements.
Thus, JCC can avoid generating code for runaway transitive closures of type dependencies.

JCC generates property accessors for aproperty called f i el d when it finds Java methods
named set Fi el d(val ue) ,get Fi el d() ori sField().

The C++ wrappers are declared in a C++ namespace structure that mirrors the Java classes
Java packages. The Python types are declared in aflat namespace at the top level of the
resulting Python extension module.

JCC's command-line arguments are best illustrated via the PyL ucene example:

Page 3



JCC Features

There are limits to both how many files can fit on the command line and how large a C++ file
the C++ compiler can handle. By default, JCC generates one large C++ file containing the
source code for al wrapper classes.

Page 4



JCC Features

Usingthe- - f i | es command line argument, this behaviour can be tuned to workaround
various limits:

for example:

« to break up the large wrapper classfileinto about 2 files:
--files 2

« tobreak up the large wrapper classfileinto about 10 files:
--files 10

« to generate one C++ file per Java class wrapped:
--files separate

The- - prefixand--root argumentsare passed throughtodi stuti |l s'setup().

4. Classpath considerations

When generating wrappers for Python, the JAR files passed to JCC via- - j ar are copied
into the resulting Python extension egg as resources and added to the extension modul€'s
CLASSPATH variable. Classes or JAR filesthat are required by the classes contained in the
argument JAR files need to be made findable viaJCC's - - cl asspat h command line
argument. At runtime, these need to be appended to the extension's CLASSPATH variable
before starting the VM with i ni t VM CLASSPATH) .

To have such required jar files also automatically copied into resulting Python extension egg
and added to the classpath at build and runtime, usethe - - i ncl ude option. This option
workslikethe- - j ar option except that no wrappers are generated for the classes contained
in them unless they're explicitely named on the command line.

When more than one JCC-built extension module is going to be used in the same Python VM
and these extension modul es share Java classes, only one extension module should be
generated with wrappers for these shared classes. The other extension modules must be built
by importing the one with the shared classes by using the - - i nport command line
parameter. This ensures that only one copy of the wrappers for the shared classes are
generated and that they are compatible among all extension modules sharing them.

5. Using distutils vs setuptools

By default, when building a Python extension, if set upt ool s isfound to beinstalled, itis
used over di st uti | s. If youwant toforcetheuseof di stuti | s over set upt ool s,
usethe- - use-di st uti | s command line argument.

6. Distributing an egg

Page 5



JCC Features

The- - bdi st option can be used to ask JCC to invokedi st uti | s with bdi st or

set upt ool s withbdi st _egg. If set upt ool s isused, the resulting egg hasto be
installed withtheeasy_i nst al | instaler which is normally part of a Python installation
that includes set upt ool s.

7. JCC'sruntime API functions

JCC includes a small runtime component that is compiled into any Python extension it
produces.

This runtime component makes it possible to manage the JavaVM from Python. Because a
JavaVM can be configured with amyriad of options, it is not automatically started when the
resulting Python extension module is |oaded into the Python interpreter.

Instead, thei ni t VM) function must be called from the main thread before using any of the
wrapped classes. It takes the following keyword arguments:

« classpath
A string containing one or more directories or jar filesfor the Java VM to search for
classes. Every Python extension produced by JCC exports a CLASSPATH variable that is
hardcoded to the jar files that it was produced from. A copy of each jar fileisinstalled as
aresource file with the extension when JCC isinvoked with the- - i nst al | command
line argument. This parameter is optional and defaults to the CLASSPATH string
exported by the modulei ni t VMisimported from.

>>> j nport | ucene
>>> | ucene. i nit VM cl asspat h=l ucene. CLASSPATH)

« initialheap
The initial amount of Java heap to start the Java VM with. Thisargument is a string that
follows the same syntax as the similar - Xns java command line argument.

>>> jnport |ucene

>>> | ucene.ini tVMinitial heap='32m)

>>> | ucene. Runti me. get Runti me() .t ot al Menory()
33357824L

« maxheap
The maximum amount of Java heap that could become available to the Java VM. This
argument is a string that follows the same syntax as the similar - Xnmx java command line
argument.

 maxstack
The maximum amount of stack space that available to the Java VM. Thisargument isa
string that follows the same syntax as the similar - Xss java command line argument.

Page 6


http://peak.telecommunity.com/DevCenter/EasyInstall

JCC Features

e vmargs
A string of comma separated additional options to pass to the VM startup rountine. These
are passed through as-is. For example:

>>> j nmport | ucene
>>>

| ucene.init VM vnmargs='-Xcheck:jni,-verbose:jni,-verbose: gc')

Thei ni t VM) and get VMENnv() functions return a JCCEnNv object that has afew utility
methods on it:

« attachCurrent Thread(nane, asDaenon)

Before athread created in Python or elsewhere but not in the Java VM can be used with
the Java VM, this method needs to be invoked. The two arguments it takes are optional
and self-explanatory.

« detachCurrent Thread() Theoppositeof att achCurrent Thread() . This
method should be used with extreme caution as Python's and java VM's garbage
collectors may use athread detached too early causing a system crash. The utility of this
method seems dubious at the moment.

There are several differences between INI'sf i ndCl ass() and Javas
Cl ass. forName():

« classNameisa'l' separated string of names
» theclassloadersaredifferent, f i ndCl ass() may find classes that
Cl ass. f or Nane() won't.

For example:

>>> from | ucene inport *
>>> j ni t VM CLASSPATH)
>>> findC ass(' org/ apache/| ucene/ docunment / Docunent ')
<C ass: cl ass org. apache. | ucene. docunent . Docunent >
>>> (l ass. f or Nane(' or g. apache. | ucene. docunent . Docunent ')
Traceback (nmost recent call last):

File "<stdin>", line 1, in <nodul e>
| ucene. JavaError: java.l ang. d assNot FoundExcepti on:

or g/ apache/ | ucene/ docunent / Docunent

>>> (l ass. for Nane('java. |l ang. Qbj ect')
<C ass: class java.l ang. Obj ect >

8. Type casting and instance checks

Many Java APIs are declared to return types that are less specific than the types actually
returned. In Java 1.5, thisis worked around with type parameters. JCC generates code to

Page 7



JCC Features

heed type parameters unless the - - no- generi cs isused. See next section for detailson
Java generics support.

In C++, casting the object into its actual type is supported viathe regular C casting operator.

In Python each wrapped class has a class method called cast _ that implements the same
functionality.

Similarly, each wrapped class has a class method called i nst ance__ that tests whether the
wrapped java instance is of the given type. For example:

i f Bool eanQuery. i nstance_(query):
bool eanQuery = Bool eanQuery. cast _(query)

print bool eanQuery. get C auses()

9. Handling generic classes

Java 1.5 added support for parameterized types. JCC generates code to heed type parameters
unlessthe - - no- gener i cs command line parameter is used. Java type parameterization is
aruntime feature. The same classis used for all its parameterizations. Similarly, JCC
wrapper objects all use the same class but store type parameterizations on instances and make
them accessible as atuple viathe par anet er s_ property.

For example, an Ar r ayLi st <Docunent > instance, has( <t ype ' Docunent' >, ) for
par anmet ers_ anditsget () method usesthat type parameter to wrap its return values.

To allocate an instance of a generic Java class with specific type parameters use the of _ ()
method. This method accepts one or more Python wrapper classes to use as type parameters.
For example, j ava. uti | . ArraylLi st <E> isdeclared to accept one type parameter. Its
wrapper'sof () method hence accepts one parameter, a Python class, to use as type
parameter for the return type of itsget () method, among others:

>>> a = Arraylist().of _(Docunent)
>>> a

<ArraylList: []>

>>> a. paraneters_

(<type 'Docunent'>,)

>>> a. add( Docunent ())

True

>>> a. get (0)

<Docunent: Docunent <>>

The use of type parametersis, of course, optional. A generic Java class can still be used as
before, without type parameters. Downcasting from Cbj ect isthen necessary:

Page 8



JCC Features

10. Handling arrays

Java arrays are wrapped with a C++ JArray template. The[ ] isavailable for read access.
Thistemplate, JAr r ay<T>, accomodates all java primitive types, j st ri ng, j obj ect
and wrapper class arrays.

Java arrays are returned to Python in a JAr r ay wrapper instance that implements the Python
seguence protocol. It is possible to change an array's elements but not to change an array's
size.

To convert achar array to aPython stringusea’ ' . j oi n(array) construct.

Any Java method expecting an array can be called with the corresponding sequence object
from python.

To instantiate a Java array from Python, use one of the following forms:

Instead of ' i nt' , youmay alsouseoneof ' obj ect',' string',' bool',"' byte',
"char','double','float','long" and' short' tocreatean array of the
corresponding type.

Because there is only one wrapper class for object arrays, the JArr ay(' obj ect') type's
constructor takes a second argument denoting the class of the object elements. This argument
isoptional and defaultsto Cbj ect .

Aswith the Obj ect types, the JAr r ay typesalsoincludeacast _ method. This method
becomes useful when the array returned to Python iswrapped asaplain Obj ect . Thisisthe

Page 9



JCC Features

case, for example, with nested arrays since there is no distinct Python type for every different
javaobject array class - al java object arrays are wrapped by JArray (' obj ect ') . For
example:

In both cases, the java type of obj must be compatible with the array typeit is being cast to.

To verify that a Java object is of agiven array type, usethei nst ance_() method
available on the array type. Thisis not the same as verifying that it is assignable with
elements of a given type. For example, using the arrays created above:

Page 10



JCC Features

#is it array of Docunent ? are d's elenents of type Docunment ?
>>> JArray(' object').instance (d, Docunent)
True

#is it array of Class ? are d's elenents of type Cass ?
>>> JArray('object').instance_(d, d ass)
Fal se

# can it receive Docunent instances ?
>>> JArray(' object').assignable (d, Document)
True

11. Exception reporting

Exceptions that occur in the Java VM and that escapeto C++ arereported asaj avakr r or
C++ exception. When using Python wrappers, the C++ exceptions are handled and reported
with Python exceptions. When using C++ only, failure to handle the exception in your C++
code will cause the process to crash.

Exceptions that occur in the Java VM and that escape to the Python VM are reported with a
JavakEr r or python exception object. Theget JavaExcept i on() method can be called
onJavakEr r or objectsto obtain the original java exception object wrapped as any other
Java object. This Java object can be used to obtain a Java stack trace for the error, for
example.

Exceptions that occur in the Python VM and that escape to the Java VM, as for example can
happen in Python extensions (see topic below) are reported to the JavaVM as a

Runt i meExcepti on or asaPyt honExcept i on when using shared mode. See
installation instructions for more information about shared mode.

12. Writing Java class extensionsin Python

JCC makesit relatively easy to extend a Java class from Python. Thisis done viaan
intermediary class written in Java that implements a special method called

pyt honExt ensi on() and that declares a number of native methods that are to be
implemented by the actual Python extension.

When JCC sees these special extension java classes it generates the C++ code implementing
the native methods they declare. These native methods call the corresponding Python method
implementations passing in parameters and returning the result to the Java VM caller.

For example, to implement a Lucene analyzer in Python, one would implement first such an
extension classin Java

Page 11


../../jcc/documentation/install.html

JCC Features

Thepyt honExt ensi on() methodsiswhat makes this class recognized as an extension
class by JCC. They should be included verbatim as above along with the declaration of the
pyt honCbj ect instance variable.

The implementation of the native pyt honDecRef () method is generated by JCC and is
necessary becauseit seemsthat f i nal i ze() cannot itself be native. Since an extension
class wraps the Python instance object it's going to be calling methods on, its ref count needs
to be decremented when this Java wrapper class disappears. A declaration for

pyt honDecRef () andafi nal i ze() implementation should always be included
verbatim as above.

Redlly, the only non boilerplate user input is the constructor of the class and the other native
methods, t okenSt r ean{ ) inthe example above.

The corresponding Python class(es) are implemented as follows:

Page 12




JCC Features

Whenan__init__ () isdeclared, super () must be called or else the Java wrapper class
will not know about the Python instance it needs to invoke.

When a java extension class declares native methods for which there are public or protected
equivalents available on the parent class, JCC generates code that makes it possible to call
super () onthese methods from Python as well.

There are anumber of extension examples available in PyLucene's test suite and samples.

13. Embedding a Python VM in a Java VM

Using the same techniques used when writing a Python extension of a Java class, JCC may
also be used to embed a Python VM in aJava VM. Following are the steps and constraints to
follow to achieve this:

e JCC must be built in shared mode. See installation instructions for more information
about shared mode. Note that for this use on Mac OS X, JCC must also be built with the
link flags" - f ramewor k", " Pyt hon" inthe LFLAGS value.

« Asdescribed in the previous section, define one or more Java classes to be "extended"
from Python to provide the implementations of the native methods declared on them.

Page 13


http://svn.apache.org/viewcvs.cgi/lucene/pylucene/trunk/test
../../documentation/readme.html
../../jcc/documentation/install.html

JCC Features

Instances of these classes implement the bridges into the Python VM from Java.

Theor g. apache. j cc. Pyt honVMJavaclassis going be used from the JavaVM's
main thread to initialize the embedded Python VM. This classisinstalled inside the JCC
egg under thej cc/ cl asses directory and the full path to this directory must be on the
Java CLASSPATH.

The JCC egg directory contains the JCC shared runtime library - not the JCC Python
extension shared library - but alibrary called | i bj cc. dyl i b on Mac OS X,
l'ibjcc.soonLinuxorjcc.dl |l onWindows. Thisdirectory must be added to the
JavaVM's shared library path viathe- Dj ava. | i brary. pat h command line
parameter.

In the JavaVM's main thread, initialize the Python VM by calling itsstaticst art ()
method passing it a Python program name string and optional start-up argumentsin a
string array that will be made accessiblein Python viasys. ar gv. Note that the program
name string is purely informational, and is not used by thest art () code other than to
initialize that Python variable. This method returns the singleton PythonVM instance to
be usedinthisJavaVM. st ar t () may be called multiple times; it will always return
the same singleton instance. Thisinstance may also be retrieved at any later time viathe
static get () method defined onthe or g. apache. j cc. Pyt honVMclass.

Any JavaVM thread that is going to be calling into the Python VM should start with
acquiring areference to the Python thread state object by calling

acqui reThr eadSt at e() method on the Python VM instance. It should then release
the Python thread state before terminating by callingr el easeThr eadSt at e() .
Calling these methods is optional but strongly recommended as it ensures that Python is
not creating and throwing away athread state everytime the Python VM is entered and
exited from a given Java VM thread.

Any JavaVM thread may instantiate a Python object for which an extension class was
defined in Java as described in the previous section by calling thei nst ant i at e()
method on the PythonVM instance. This method takes two string parameters, the name of
the Python module and the name of the Python class to import and instantiate from it.
The __init__ () constructor on this class must be callable without any parameters
and, if defined, must call super () inorder to initialize the Java side. The

i nstanti at e() method isdeclaredtoreturnj ava. | ang. Qbj ect but the return
value is actually an instance of the Java extension class used and must be downcast to it.

14. Pythonic protocols

When generating wrappers for Python, JCC attempts to detect which classes can be made
iterable:

When aclass declaresto implement j ava. | ang. | t er abl e, JCC makesit iterable
from Python.

Page 14



JCC Features

e When aJava class declares a method called next () with no arguments returning an
object type, this classis madeiterable. Itsnext () method is assumed to terminate
iteration by returning nul | .

JCC generates a Python mapping get method for a class when requested to do so viathe

- - mappi ng command line option which takes two arguments, the class to generate the
mapping get for and the Java method to use. The method is specified with its name followed
by ":' and its Java signature.

For example, Syst em get Properties()['java. cl ass. path'] ismade possible
by:

JCC generates Python sequence length and get methods for a class when requested to do so
viathe - - sequence command line option which takes three arguments, the class to
generate the sequence length and get for and the two java methods to use. The methods are
specified with their name followed by ":' and their Java signature. For example:

is made possible by:

Page 15


http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp16432
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp16432

	1 Installing JCC
	2 Invoking JCC
	3 Generating C++ and Python wrappers with JCC
	4 Classpath considerations
	5 Using distutils vs setuptools
	6 Distributing an egg
	7 JCC's runtime API functions
	8 Type casting and instance checks
	9 Handling generic classes
	10 Handling arrays
	11 Exception reporting
	12 Writing Java class extensions in Python
	13 Embedding a Python VM in a Java VM
	14 Pythonic protocols

