
JCC Features

Table of contents

1 Installing JCC...2

2 Invoking JCC... 2

3 Generating C++ and Python wrappers with JCC...2

4 Classpath considerations..5

5 Using distutils vs setuptools...5

6 Distributing an egg...5

7 JCC's runtime API functions..6

8 Type casting and instance checks.. 7

9 Handling generic classes..8

10 Handling arrays.. 9

11 Exception reporting.. 11

12 Writing Java class extensions in Python.. 11

13 Embedding a Python VM in a Java VM...13

14 Pythonic protocols..14

Copyright © 2009 The Apache Software Foundation. All rights reserved.

Warning:
Before calling any PyLucene API that requires the Java VM, start it by calling initVM(classpath, ...). More about
this function in here.

1. Installing JCC

JCC is a Python extension written in Python and C++. It requires a Java Runtime
Environment (JRE) to operate as it uses Java's reflection APIs to do its work. It is built and
installed via distutils or setuptools.

See installation for more information and operating system specific notes.

2. Invoking JCC

JCC is installed as a package and how to invoke it depends on the Python version used:

• python 2.7: python -m jcc
• python 2.6: python -m jcc.__main__
• python 2.5: python -m jcc
• python 2.4:

• no setuptools: python site-packages/jcc/__init__.py
• with setuptools: python site-packages/jcc egg

directory/jcc/__init__.py

• python 2.3: python site-packages/jcc egg
directory/jcc/__init__.py

3. Generating C++ and Python wrappers with JCC

JCC started as a C++ code generator for hiding the gory details of accessing methods and
fields on Java classes via Java's Native Invocation Interface. These C++ wrappers make it
possible to access a Java object as if it was a regular C++ object very much like GCJ's CNI
interface.

It then became apparent that JCC could also generate the C++ wrappers for making these
classes available to Python. Every class that gets thus wrapped becomes a CPython type.

JCC generates wrappers for all public classes that are requested by name on the command
line or via the --jar command line argument. It generates wrapper methods for all public
methods and fields on these classes whose return type and parameter types are found in one
of the following ways:

JCC Features

Page 2
Copyright © 2009 The Apache Software Foundation. All rights reserved.

../../jcc/documentation/install.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/invocation.html
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://docs.python.org/ext/defining-new-types.html

• the type is one of the requested classes
• the type is one of the requested classes' superclass or implemented interfaces
• the type is available from one of the packages listed via the --package command line

argument

Overloaded methods are supported and are selected at runtime on the basis of the type and
number of arguments passed in.

JCC does not generate wrappers for methods or fields which don't satisfy these requirements.
Thus, JCC can avoid generating code for runaway transitive closures of type dependencies.

JCC generates property accessors for a property called field when it finds Java methods
named setField(value), getField() or isField().

The C++ wrappers are declared in a C++ namespace structure that mirrors the Java classes'
Java packages. The Python types are declared in a flat namespace at the top level of the
resulting Python extension module.

JCC's command-line arguments are best illustrated via the PyLucene example:

$ python -m jcc # run JCC to wrap
--jar lucene.jar # all public classes in the lucene jar file
--jar analyzers.jar # and the lucene analyzers contrib package
--jar snowball.jar # and the snowball contrib package
--jar highlighter.jar # and the highlighter contrib package
--jar regex.jar # and the regex search contrib package
--jar queries.jar # and the queries contrib package
--jar extensions.jar # and the Python extensions package
--package java.lang # including all dependencies found in the

java.lang package
--package java.util # and the java.util package
--package java.io # and the java.io package
java.lang.System # and to explicitely wrap java.lang.System
java.lang.Runtime # as well as java.lang.Runtime
java.lang.Boolean # and java.lang.Boolean
java.lang.Byte # and java.lang.Byte
java.lang.Character # and java.lang.Character
java.lang.Integer # and java.lang.Integer
java.lang.Short # and java.lang.Short
java.lang.Long # and java.lang.Long
java.lang.Double # and java.lang.Double
java.lang.Float # and java.lang.Float
java.text.SimpleDateFormat

and java.text.SimpleDateFormat
java.io.StringReader

and java.io.StringReader
java.io.InputStreamReader

and java.io.InputStreamReader
java.io.FileInputStream

and java.io.FileInputStream

JCC Features

Page 3
Copyright © 2009 The Apache Software Foundation. All rights reserved.

java.util.Arrays # and java.util.Arrays
--exclude org.apache.lucene.queryParser.Token

while explicitely not wrapping
org.apache.lucene.queryParser.Token

--exclude org.apache.lucene.queryParser.TokenMgrError
nor

org.apache.lucene.queryParser.TokenMgrError
--exclude org.apache.lucene.queryParser.ParseException

#
nor.apache.lucene.queryParser.ParseException

--python lucene # generating Python wrappers into a module
called lucene

--version 2.4.0 # giving the Python extension egg version
2.4.0

--mapping org.apache.lucene.document.Document
'get:(Ljava/lang/String;)Ljava/lang/String;'

asking for a Python mapping protocol
wrapper

for get access on the Document class by
calling its get method

--mapping java.util.Properties
'getProperty:(Ljava/lang/String;)Ljava/lang/String;'

asking for a Python mapping protocol
wrapper

for get access on the Properties class by
calling its getProperty method

--sequence org.apache.lucene.search.Hits
'length:()I'
'doc:(I)Lorg/apache/lucene/document/Document;'

asking for a Python sequence protocol
wrapper

for length and get access on the Hits class
by

calling its length and doc methods
--files 2 # generating all C++ classes into about 2

.cpp
files

--build # and finally compiling the generated C++
code

into a Python egg via setuptools - when
installed - or a regular Python extension

via
distutils or setuptools otherwise

--module collections.py
copying the collections.py module into the

egg
--install # installing it into Python's site-packages

directory.

There are limits to both how many files can fit on the command line and how large a C++ file
the C++ compiler can handle. By default, JCC generates one large C++ file containing the
source code for all wrapper classes.

JCC Features

Page 4
Copyright © 2009 The Apache Software Foundation. All rights reserved.

Using the --files command line argument, this behaviour can be tuned to workaround
various limits:
for example:

• to break up the large wrapper class file into about 2 files:
--files 2

• to break up the large wrapper class file into about 10 files:
--files 10

• to generate one C++ file per Java class wrapped:
--files separate

The --prefix and --root arguments are passed through to distutils' setup().

4. Classpath considerations

When generating wrappers for Python, the JAR files passed to JCC via --jar are copied
into the resulting Python extension egg as resources and added to the extension module's
CLASSPATH variable. Classes or JAR files that are required by the classes contained in the
argument JAR files need to be made findable via JCC's --classpath command line
argument. At runtime, these need to be appended to the extension's CLASSPATH variable
before starting the VM with initVM(CLASSPATH).

To have such required jar files also automatically copied into resulting Python extension egg
and added to the classpath at build and runtime, use the --include option. This option
works like the --jar option except that no wrappers are generated for the classes contained
in them unless they're explicitely named on the command line.

When more than one JCC-built extension module is going to be used in the same Python VM
and these extension modules share Java classes, only one extension module should be
generated with wrappers for these shared classes. The other extension modules must be built
by importing the one with the shared classes by using the --import command line
parameter. This ensures that only one copy of the wrappers for the shared classes are
generated and that they are compatible among all extension modules sharing them.

5. Using distutils vs setuptools

By default, when building a Python extension, if setuptools is found to be installed, it is
used over distutils. If you want to force the use of distutils over setuptools,
use the --use-distutils command line argument.

6. Distributing an egg

JCC Features

Page 5
Copyright © 2009 The Apache Software Foundation. All rights reserved.

The --bdist option can be used to ask JCC to invoke distutils with bdist or
setuptools with bdist_egg. If setuptools is used, the resulting egg has to be
installed with the easy_install installer which is normally part of a Python installation
that includes setuptools.

7. JCC's runtime API functions

JCC includes a small runtime component that is compiled into any Python extension it
produces.

This runtime component makes it possible to manage the Java VM from Python. Because a
Java VM can be configured with a myriad of options, it is not automatically started when the
resulting Python extension module is loaded into the Python interpreter.

Instead, the initVM() function must be called from the main thread before using any of the
wrapped classes. It takes the following keyword arguments:

• classpath
A string containing one or more directories or jar files for the Java VM to search for
classes. Every Python extension produced by JCC exports a CLASSPATH variable that is
hardcoded to the jar files that it was produced from. A copy of each jar file is installed as
a resource file with the extension when JCC is invoked with the --install command
line argument. This parameter is optional and defaults to the CLASSPATH string
exported by the module initVM is imported from.

>>> import lucene
>>> lucene.initVM(classpath=lucene.CLASSPATH)

• initialheap
The initial amount of Java heap to start the Java VM with. This argument is a string that
follows the same syntax as the similar -Xms java command line argument.

>>> import lucene
>>> lucene.initVM(initialheap='32m')
>>> lucene.Runtime.getRuntime().totalMemory()
33357824L

• maxheap
The maximum amount of Java heap that could become available to the Java VM. This
argument is a string that follows the same syntax as the similar -Xmx java command line
argument.

• maxstack
The maximum amount of stack space that available to the Java VM. This argument is a
string that follows the same syntax as the similar -Xss java command line argument.

JCC Features

Page 6
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://peak.telecommunity.com/DevCenter/EasyInstall

• vmargs
A string of comma separated additional options to pass to the VM startup rountine. These
are passed through as-is. For example:

>>> import lucene
>>>

lucene.initVM(vmargs='-Xcheck:jni,-verbose:jni,-verbose:gc')

The initVM() and getVMEnv() functions return a JCCEnv object that has a few utility
methods on it:

• attachCurrentThread(name, asDaemon)
Before a thread created in Python or elsewhere but not in the Java VM can be used with
the Java VM, this method needs to be invoked. The two arguments it takes are optional
and self-explanatory.

• detachCurrentThread() The opposite of attachCurrentThread(). This
method should be used with extreme caution as Python's and java VM's garbage
collectors may use a thread detached too early causing a system crash. The utility of this
method seems dubious at the moment.

There are several differences between JNI's findClass() and Java's
Class.forName():

• className is a '/' separated string of names
• the class loaders are different, findClass() may find classes that

Class.forName() won't.

For example:

>>> from lucene import *
>>> initVM(CLASSPATH)
>>> findClass('org/apache/lucene/document/Document')
<Class: class org.apache.lucene.document.Document>
>>> Class.forName('org.apache.lucene.document.Document')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

lucene.JavaError: java.lang.ClassNotFoundException:
org/apache/lucene/document/Document

>>> Class.forName('java.lang.Object')
<Class: class java.lang.Object>

8. Type casting and instance checks

Many Java APIs are declared to return types that are less specific than the types actually
returned. In Java 1.5, this is worked around with type parameters. JCC generates code to

JCC Features

Page 7
Copyright © 2009 The Apache Software Foundation. All rights reserved.

heed type parameters unless the --no-generics is used. See next section for details on
Java generics support.

In C++, casting the object into its actual type is supported via the regular C casting operator.

In Python each wrapped class has a class method called cast_ that implements the same
functionality.

Similarly, each wrapped class has a class method called instance_ that tests whether the
wrapped java instance is of the given type. For example:

if BooleanQuery.instance_(query):
booleanQuery = BooleanQuery.cast_(query)

print booleanQuery.getClauses()

9. Handling generic classes

Java 1.5 added support for parameterized types. JCC generates code to heed type parameters
unless the --no-generics command line parameter is used. Java type parameterization is
a runtime feature. The same class is used for all its parameterizations. Similarly, JCC
wrapper objects all use the same class but store type parameterizations on instances and make
them accessible as a tuple via the parameters_ property.

For example, an ArrayList<Document> instance, has (<type 'Document'>,) for
parameters_ and its get() method uses that type parameter to wrap its return values.

To allocate an instance of a generic Java class with specific type parameters use the of_()
method. This method accepts one or more Python wrapper classes to use as type parameters.
For example, java.util.ArrayList<E> is declared to accept one type parameter. Its
wrapper's of_() method hence accepts one parameter, a Python class, to use as type
parameter for the return type of its get() method, among others:

>>> a = ArrayList().of_(Document)
>>> a
<ArrayList: []>
>>> a.parameters_
(<type 'Document'>,)
>>> a.add(Document())
True
>>> a.get(0)
<Document: Document<>>

The use of type parameters is, of course, optional. A generic Java class can still be used as
before, without type parameters. Downcasting from Object is then necessary:

JCC Features

Page 8
Copyright © 2009 The Apache Software Foundation. All rights reserved.

>>> a = ArrayList()
>>> a
<ArrayList: []>
>>> a.parameters_
(None,)
>>> a.add(Document())
True
>>> a.get(0)
<Object: Document<>>
>>> Document.cast_(a.get(0))
<Document: Document<>>

10. Handling arrays

Java arrays are wrapped with a C++ JArray template. The [] is available for read access.
This template, JArray<T>, accomodates all java primitive types, jstring, jobject
and wrapper class arrays.

Java arrays are returned to Python in a JArray wrapper instance that implements the Python
sequence protocol. It is possible to change an array's elements but not to change an array's
size.

To convert a char array to a Python string use a ''.join(array) construct.

Any Java method expecting an array can be called with the corresponding sequence object
from python.

To instantiate a Java array from Python, use one of the following forms:

>>> array = JArray('int')(size)
the resulting Java int array is initialized with zeroes

>>> array = JArray('int')(sequence)
the sequence must only contain ints
the resulting Java int array contains the ints in the sequence

Instead of 'int', you may also use one of 'object', 'string', 'bool', 'byte',
'char', 'double', 'float', 'long' and 'short' to create an array of the
corresponding type.

Because there is only one wrapper class for object arrays, the JArray('object') type's
constructor takes a second argument denoting the class of the object elements. This argument
is optional and defaults to Object.

As with the Object types, the JArray types also include a cast_ method. This method
becomes useful when the array returned to Python is wrapped as a plain Object. This is the

JCC Features

Page 9
Copyright © 2009 The Apache Software Foundation. All rights reserved.

case, for example, with nested arrays since there is no distinct Python type for every different
java object array class - all java object arrays are wrapped by JArray('object'). For
example:

cast obj to an array of ints
>>> JArray('int').cast_(obj)
cast obj to an array of Document
>>> JArray('object').cast_(obj, Document)

In both cases, the java type of obj must be compatible with the array type it is being cast to.

using nested array:

>>> d = JArray('object')(1, Document)
>>> d[0] = Document()
>>> d
JArray<object>[<Document: Document<>>]
>>> d[0]
<Document: Document<>>
>>> a = JArray('object')(2)
>>> a[0] = d
>>> a[1] = JArray('int')([0, 1, 2])
>>> a
JArray<object>[<Object:

[Lorg.apache.lucene.document.Document;@694f12>, <Object: [I@234265>]
>>> a[0]
<Object: [Lorg.apache.lucene.document.Document;@694f12>
>>> a[1]
<Object: [I@234265>
>>> JArray('object').cast_(a[0])[0]
<Object: Document<>>
>>> JArray('object').cast_(a[0], Document)[0]
<Document: Document<>>
>>> JArray('int').cast_(a[1])
JArray<int>[0, 1, 2]
>>> JArray('int').cast_(a[1])[0]
0

To verify that a Java object is of a given array type, use the instance_() method
available on the array type. This is not the same as verifying that it is assignable with
elements of a given type. For example, using the arrays created above:

is d array of Object ? are d's elements of type Object ?
>>> JArray('object').instance_(d)
True

can it receive Object instances ?
>>> JArray('object').assignable_(d)
False

JCC Features

Page 10
Copyright © 2009 The Apache Software Foundation. All rights reserved.

is it array of Document ? are d's elements of type Document ?
>>> JArray('object').instance_(d, Document)
True

is it array of Class ? are d's elements of type Class ?
>>> JArray('object').instance_(d, Class)
False

can it receive Document instances ?
>>> JArray('object').assignable_(d, Document)
True

11. Exception reporting

Exceptions that occur in the Java VM and that escape to C++ are reported as a javaError
C++ exception. When using Python wrappers, the C++ exceptions are handled and reported
with Python exceptions. When using C++ only, failure to handle the exception in your C++
code will cause the process to crash.

Exceptions that occur in the Java VM and that escape to the Python VM are reported with a
JavaError python exception object. The getJavaException() method can be called
on JavaError objects to obtain the original java exception object wrapped as any other
Java object. This Java object can be used to obtain a Java stack trace for the error, for
example.

Exceptions that occur in the Python VM and that escape to the Java VM, as for example can
happen in Python extensions (see topic below) are reported to the Java VM as a
RuntimeException or as a PythonException when using shared mode. See
installation instructions for more information about shared mode.

12. Writing Java class extensions in Python

JCC makes it relatively easy to extend a Java class from Python. This is done via an
intermediary class written in Java that implements a special method called
pythonExtension() and that declares a number of native methods that are to be
implemented by the actual Python extension.

When JCC sees these special extension java classes it generates the C++ code implementing
the native methods they declare. These native methods call the corresponding Python method
implementations passing in parameters and returning the result to the Java VM caller.

For example, to implement a Lucene analyzer in Python, one would implement first such an
extension class in Java:

JCC Features

Page 11
Copyright © 2009 The Apache Software Foundation. All rights reserved.

../../jcc/documentation/install.html

package org.apache.pylucene.analysis;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import java.io.Reader;

public class PythonAnalyzer extends Analyzer {
private long pythonObject;

public PythonAnalyzer()
{
}

public void pythonExtension(long pythonObject)
{

this.pythonObject = pythonObject;
}
public long pythonExtension()
{

return this.pythonObject;
}

public void finalize()
throws Throwable

{
pythonDecRef();

}

public native void pythonDecRef();
public native TokenStream tokenStream(String fieldName, Reader

reader);
}

The pythonExtension() methods is what makes this class recognized as an extension
class by JCC. They should be included verbatim as above along with the declaration of the
pythonObject instance variable.

The implementation of the native pythonDecRef() method is generated by JCC and is
necessary because it seems that finalize() cannot itself be native. Since an extension
class wraps the Python instance object it's going to be calling methods on, its ref count needs
to be decremented when this Java wrapper class disappears. A declaration for
pythonDecRef() and a finalize() implementation should always be included
verbatim as above.

Really, the only non boilerplate user input is the constructor of the class and the other native
methods, tokenStream() in the example above.

The corresponding Python class(es) are implemented as follows:

class _analyzer(PythonAnalyzer):

JCC Features

Page 12
Copyright © 2009 The Apache Software Foundation. All rights reserved.

def tokenStream(_self, fieldName, reader):
class _tokenStream(PythonTokenStream):

def __init__(self_):
super(_tokenStream, self_).__init__()
self_.TOKENS = ["1", "2", "3", "4", "5"]
self_.INCREMENTS = [1, 2, 1, 0, 1]
self_.i = 0
self_.posIncrAtt =

self_.addAttribute(PositionIncrementAttribute.class_)
self_.termAtt =

self_.addAttribute(TermAttribute.class_)
self_.offsetAtt =

self_.addAttribute(OffsetAttribute.class_)
def incrementToken(self_):

if self_.i == len(self_.TOKENS):
return False

self_.termAtt.setTermBuffer(self_.TOKENS[self_.i])
self_.offsetAtt.setOffset(self_.i, self_.i)

self_.posIncrAtt.setPositionIncrement(self_.INCREMENTS[self_.i])
self_.i += 1
return True

def end(self_):
pass

def reset(self_):
pass

def close(self_):
pass

return _tokenStream()

When an __init__() is declared, super() must be called or else the Java wrapper class
will not know about the Python instance it needs to invoke.

When a java extension class declares native methods for which there are public or protected
equivalents available on the parent class, JCC generates code that makes it possible to call
super() on these methods from Python as well.

There are a number of extension examples available in PyLucene's test suite and samples.

13. Embedding a Python VM in a Java VM

Using the same techniques used when writing a Python extension of a Java class, JCC may
also be used to embed a Python VM in a Java VM. Following are the steps and constraints to
follow to achieve this:

• JCC must be built in shared mode. See installation instructions for more information
about shared mode. Note that for this use on Mac OS X, JCC must also be built with the
link flags "-framework", "Python" in the LFLAGS value.

• As described in the previous section, define one or more Java classes to be "extended"
from Python to provide the implementations of the native methods declared on them.

JCC Features

Page 13
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://svn.apache.org/viewcvs.cgi/lucene/pylucene/trunk/test
../../documentation/readme.html
../../jcc/documentation/install.html

Instances of these classes implement the bridges into the Python VM from Java.
• The org.apache.jcc.PythonVM Java class is going be used from the Java VM's

main thread to initialize the embedded Python VM. This class is installed inside the JCC
egg under the jcc/classes directory and the full path to this directory must be on the
Java CLASSPATH.

• The JCC egg directory contains the JCC shared runtime library - not the JCC Python
extension shared library - but a library called libjcc.dylib on Mac OS X,
libjcc.so on Linux or jcc.dll on Windows. This directory must be added to the
Java VM's shared library path via the -Djava.library.path command line
parameter.

• In the Java VM's main thread, initialize the Python VM by calling its static start()
method passing it a Python program name string and optional start-up arguments in a
string array that will be made accessible in Python via sys.argv. Note that the program
name string is purely informational, and is not used by the start() code other than to
initialize that Python variable. This method returns the singleton PythonVM instance to
be used in this Java VM. start() may be called multiple times; it will always return
the same singleton instance. This instance may also be retrieved at any later time via the
static get() method defined on the org.apache.jcc.PythonVM class.

• Any Java VM thread that is going to be calling into the Python VM should start with
acquiring a reference to the Python thread state object by calling
acquireThreadState() method on the Python VM instance. It should then release
the Python thread state before terminating by calling releaseThreadState().
Calling these methods is optional but strongly recommended as it ensures that Python is
not creating and throwing away a thread state everytime the Python VM is entered and
exited from a given Java VM thread.

• Any Java VM thread may instantiate a Python object for which an extension class was
defined in Java as described in the previous section by calling the instantiate()
method on the PythonVM instance. This method takes two string parameters, the name of
the Python module and the name of the Python class to import and instantiate from it.
The __init__() constructor on this class must be callable without any parameters
and, if defined, must call super() in order to initialize the Java side. The
instantiate() method is declared to return java.lang.Object but the return
value is actually an instance of the Java extension class used and must be downcast to it.

14. Pythonic protocols

When generating wrappers for Python, JCC attempts to detect which classes can be made
iterable:

• When a class declares to implement java.lang.Iterable, JCC makes it iterable
from Python.

JCC Features

Page 14
Copyright © 2009 The Apache Software Foundation. All rights reserved.

• When a Java class declares a method called next() with no arguments returning an
object type, this class is made iterable. Its next() method is assumed to terminate
iteration by returning null.

JCC generates a Python mapping get method for a class when requested to do so via the
--mapping command line option which takes two arguments, the class to generate the
mapping get for and the Java method to use. The method is specified with its name followed
by ':' and its Java signature.

For example, System.getProperties()['java.class.path'] is made possible
by:

--mapping java.util.Properties
'getProperty:(Ljava/lang/String;)Ljava/lang/String;'

asking for a Python mapping protocol
wrapper

for get access on the Properties class by
calling its getProperty method

JCC generates Python sequence length and get methods for a class when requested to do so
via the --sequence command line option which takes three arguments, the class to
generate the sequence length and get for and the two java methods to use. The methods are
specified with their name followed by ':' and their Java signature. For example:

for i in xrange(len(hits)):
doc = hits[i]
...

is made possible by:

--sequence org.apache.lucene.search.Hits
'length:()I'
'doc:(I)Lorg/apache/lucene/document/Document;'

JCC Features

Page 15
Copyright © 2009 The Apache Software Foundation. All rights reserved.

http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp16432
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp16432

	1 Installing JCC
	2 Invoking JCC
	3 Generating C++ and Python wrappers with JCC
	4 Classpath considerations
	5 Using distutils vs setuptools
	6 Distributing an egg
	7 JCC's runtime API functions
	8 Type casting and instance checks
	9 Handling generic classes
	10 Handling arrays
	11 Exception reporting
	12 Writing Java class extensions in Python
	13 Embedding a Python VM in a Java VM
	14 Pythonic protocols

